The following describes the data types supported in YCQL, from the basic data types to collections, and user defined types.

The JSONB document data type is described in a separate section.

Before you start

The examples will run on any YugabyteDB universe.
To create a universe, see Set up YugabyteDB universe.

Strings

The following character types are supported:

Type Description
VARCHAR String of Unicode characters of unlimited length
TEXT String of Unicode characters of unlimited length

varchar and text are aliases.

The following Apache Cassandra character types are not supported:

Type Description
ASCII Use TEXT or VARCHAR

To test YugabyteDB support for character types, create a table that has columns with the following types specified:

CREATE KEYSPACE types_test;
USE types_test;

CREATE TABLE char_types (
  id int PRIMARY KEY,
  a TEXT,
  b VARCHAR
);

Insert the following rows into the table:

INSERT INTO char_types (id, a, b) VALUES (
  1, 'Data for the text column', 'Data for the varchar column'
);

Numeric types

The following numeric types are supported:

Type Description
TINYINT 1-byte signed integer that has a range from -128 to 127
SMALLINT 2-byte signed integer that has a range from -32,768 to 32,767
INT | INTEGER 4-byte integer that has a range from -2,147,483,648 to 2,147,483,647
BIGINT 8-byte integer that has a range from -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807
VARINT Arbitrary-precision integer
FLOAT | DOUBLE 64-bit, inexact, floating-point number
DECIMAL Exact, arbitrary-precision number, no upper-bound on decimal precision

The following example creates a table with integer type columns and inserts rows into it:

CREATE TABLE albums (
  album_id BIGINT PRIMARY KEY,
  title VARCHAR,
  play_time SMALLINT,
  library_record INT
);

INSERT INTO albums (album_id, title, play_time, library_record)
values (3223372036854775808,'Funhouse', 3600,2146483645 );

Similarly, the following example shows how to create a table with floating-point typed columns and insert a row into that table:

CREATE TABLE floating_point_test (
  float_test FLOAT PRIMARY KEY,
  decimal_test DECIMAL
);

INSERT INTO floating_point_test (float_test, decimal_test)
VALUES (92233720368547.75807, 5.36152342);

Date and time

Temporal data types allow us to store date and time data. The following date and time types are supported in YugabyteDB:

Type Description
DATE stores the dates only
TIME stores the time of day values with nanosecond precision
TIMESTAMP stores both date and time values with milliseconds precision

The following example creates a table with the temporal types:

CREATE TABLE temporal_types (
  date_type DATE PRIMARY KEY,
  time_type TIME,
  timestamp_type TIMESTAMP
);

The following example inserts a row into the table:

INSERT INTO temporal_types (
  date_type, time_type, timestamp_type)
VALUES
  ('2000-06-28', '06:23:00', '2016-06-22 19:10:25');

The following shows the inserted data:

ycqlsh> select * from temporal_types;
 date_type  | time_type          | timestamp_type
------------+--------------------+---------------------------------
 2000-06-28 | 06:23:00.000000000 | 2016-06-23 00:10:25.000000+0000

(1 rows)

Universally unique ID types

A universally unique identifier (or UUID) is commonly used in distributed databases for generating unique identifiers without coordination from a central authority since that can become a bottleneck. These IDs are then used to identify unique rows in a database table. YugabyteDB supports two versions of UUIDs:

Type Description
UUID Version 4 UUID
TIMEUUID Version 1 UUID

TIMEUUID is typically used when time-ordered unique identifiers are required in time-series use cases.

The following example creates a table with the UUID types:

CREATE TABLE iot (
  sensor_id UUID,
  measurement_id TIMEUUID,
  measurement FLOAT,
  PRIMARY KEY (sensor_id, measurement_id)
);

The following example inserts a row into the table:

INSERT INTO iot (
  sensor_id, measurement_id, measurement)
VALUES
  (28df63b7-cc57-43cb-9752-fae69d1653da, 4eb369b0-91de-11bd-8000-000000000000, 98.4);

The following shows the inserted data:

ycqlsh> select * from iot;
 sensor_id                            | measurement_id                       | measurement
--------------------------------------+--------------------------------------+-------------
 28df63b7-cc57-43cb-9752-fae69d1653da | 4eb369b0-91de-11bd-8000-000000000000 |        98.4

(1 rows)

Collection types

A collection data type allows storage of multi-valued columns. YugabyteDB supports the following types of collections:

Type Description
LIST Collection of ordered elements. Allows duplicates.
SET Collection of unique elements. Order may not be maintained.
MAP Collection of key-value pairs. Order may not be maintained. Keys must be unique.

The following example creates a table with the collection types:

CREATE TABLE user_profile (
  user_id UUID,
  user_name TEXT,
  recent_logins LIST<TIMESTAMP>,
  phone_numbers MAP<TEXT,TEXT>,
  account_numbers SET<TEXT>,
  PRIMARY KEY (user_id)
);

The following example inserts a row into the table:

INSERT INTO user_profile (
  user_id, user_name, recent_logins, phone_numbers, account_numbers)
VALUES
  (28df63b7-cc57-43cb-9752-fae69d1653da, 'John Doe', ['2023-02-03T04:05:00+0000'], {'home':'669-555-1212','work':'408-555-2121'},
  {'sa-1011212'});

The following shows the inserted data:

ycqlsh> select * from user_profile;
 user_id                              | user_name | recent_logins                       | phone_numbers                                    | account_numbers
--------------------------------------+-----------+-------------------------------------+--------------------------------------------------+-----------------
 28df63b7-cc57-43cb-9752-fae69d1653da |  John Doe | ['2023-02-03 04:05:00.000000+0000'] | {'home': '669-555-1212', 'work': '408-555-2121'} |  {'sa-1011212'}

(1 rows)

When the user logs in again, the recent_logins LIST column can be updated as shown below:

UPDATE user_profile
SET recent_logins = recent_logins + ['2023-04-05 09:15:08.000000+0000']
WHERE user_id = 28df63b7-cc57-43cb-9752-fae69d1653da;
ycqlsh> select * from user_profile;
 user_id                              | user_name | recent_logins                                                          | phone_numbers                                    | account_numbers
--------------------------------------+-----------+------------------------------------------------------------------------+--------------------------------------------------+-----------------
 28df63b7-cc57-43cb-9752-fae69d1653da |  John Doe | ['2011-02-03 04:05:00.000000+0000', '2023-04-05 09:15:08.000000+0000'] | {'home': '669-555-1212', 'work': '408-555-2121'} |  {'sa-1011212'}

(1 rows)

The preceding example appends the new element to an existing list. Prepending is also possible, as follows:

UPDATE user_profile
SET recent_logins = ['2023-04-05 09:15:08.000000+0000'] + recent_logins
WHERE user_id = 28df63b7-cc57-43cb-9752-fae69d1653da;
ycqlsh> select * from user_profile;
 user_id                              | user_name | recent_logins                                                          | phone_numbers                                    | account_numbers
--------------------------------------+-----------+------------------------------------------------------------------------+--------------------------------------------------+-----------------
 28df63b7-cc57-43cb-9752-fae69d1653da |  John Doe | ['2023-04-05 09:15:08.000000+0000', '2011-02-03 04:05:00.000000+0000'] | {'home': '669-555-1212', 'work': '408-555-2121'} |  {'sa-1011212'}

(1 rows)

SET and MAP work similarly, except that these types do not have a notion of prepending and the syntax for literals is slightly different. See YCQL Collections for more details.

User defined types

A user defined type is a collection of data types similar to a struct in a programming language.

The following example shows how to create and use a user defined type.

  1. Create a user defined type.

    CREATE TYPE inventory_item (
       name text,
       supplier_id integer,
       price float
    );
    
  2. Create a table with a user defined type as follows:

    CREATE TABLE on_hand (
       item_id UUID PRIMARY KEY,
       item inventory_item,
       count integer
    );
    
  3. Insert a row as follows:

    INSERT INTO on_hand (item_id, item, count) VALUES (28df63b7-cc57-43cb-9752-fae69d1653da, {name: 'fuzzy dice', supplier_id: 42, price: 1.99}, 1000);
    
  4. To select data from the on_hand example table, execute the following:

    SELECT * FROM on_hand WHERE item_id = 28df63b7-cc57-43cb-9752-fae69d1653da;
    

    Expect the following output:

     item_id                              | item                                               | count
    --------------------------------------+----------------------------------------------------+-------
     28df63b7-cc57-43cb-9752-fae69d1653da | {name: 'fuzzy dice', supplier_id: 42, price: 1.99} |  1000
    
    (1 rows)